grwat
implements several methods for
baseflow filtering, including those by Lyne and
Hollick (1979), Chapman (1991),
Boughton (1993), Jakeman and Hornberger (1993) and Chapman and Maxwell (1996). The
get_baseflow()
function does the job:
Qbase = gr_baseflow(spas$Q, method = 'lynehollick', a = 0.925, passes = 3)
head(Qbase)
#> [1] 3.698598 3.789843 3.876099 3.958334 4.037031 4.112454
Though get_baseflow()
needs just a vector of runoff
values, it can be applied in a traditional tidyverse pipeline like
follows:
# Calculate baseflow using Jakeman approach
hdata = spas %>%
mutate(Qbase = gr_baseflow(Q, method = 'jakeman'))
# Visualize for 2020 year
ggplot(hdata) +
geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
scale_x_date(limits = c(ymd(19800101), ymd(19801231)))
#> Warning: Removed 23376 rows containing non-finite outside the scale range
#> (`stat_align()`).
#> Removed 23376 rows containing non-finite outside the scale range
#> (`stat_align()`).
Different methods can be compared in a similar way:
hdata = spas %>%
mutate(lynehollick = gr_baseflow(Q, method = 'lynehollick', a = 0.9),
boughton = gr_baseflow(Q, method = 'boughton', k = 0.9),
jakeman = gr_baseflow(Q, method = 'jakeman', k = 0.9),
maxwell = gr_baseflow(Q, method = 'maxwell', k = 0.9)) %>%
pivot_longer(lynehollick:maxwell, names_to = 'Method', values_to = 'Qbase')
ggplot(hdata) +
geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
scale_x_date(limits = c(ymd(19810101), ymd(19811231))) +
facet_wrap(~Method)
#> Warning: Removed 93508 rows containing non-finite outside the scale range
#> (`stat_align()`).
#> Removed 93508 rows containing non-finite outside the scale range
#> (`stat_align()`).
In case of 100% hydraulic connection between ground waters and river discharge, according to Kudelin (1960) the baseflow is equal to zero level at the point of maximum discharge during the spring flood event. Since extraction of the spring flood requires meteorological data, it cannot be extracted by simple filtering. Instead, you can use the advanced separation method by Rets et al. (2022), which incorporates Kudelin’s approach during the spring flood:
p = gr_get_params('center')
p$filter = 'kudelin'
hdata = spas %>%
mutate(lynehollick = gr_baseflow(Q, method = 'lynehollick',
a = 0.925, passes = 3),
kudelin = gr_separate(spas, p)$Qbase) %>%
pivot_longer(lynehollick:kudelin, names_to = 'Method', values_to = 'Qbase')
#> grwat: data frame is correct
#> grwat: parameters list and types are OK
# Visualize for 1980 year
ggplot(hdata) +
geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
scale_x_date(limits = c(ymd(19800101), ymd(19801231))) +
facet_wrap(~Method)
#> Warning: Removed 46752 rows containing non-finite outside the scale range
#> (`stat_align()`).
#> Removed 46752 rows containing non-finite outside the scale range
#> (`stat_align()`).