Package 'grwat'

Title: River Hydrograph Separation and Analysis
Description: River hydrograph separation and daily runoff time series analysis. Provides various filters to separate baseflow and quickflow. Implements advanced separation technique by Rets et al. (2022) <doi:10.1134/S0097807822010146> which involves meteorological data to reveal genetic components of the runoff: ground, rain, thaw and spring (seasonal thaw). High-performance C++17 computation, annually aggregated variables, statistical testing and numerous plotting functions for high-quality visualization.
Authors: Timofey Samsonov [aut, cre] , Ekaterina Rets [ctb] , Maria Kireeva [ctb]
Maintainer: Timofey Samsonov <[email protected]>
License: MIT + file LICENSE
Version: 0.0.4.9000
Built: 2025-01-17 04:39:30 UTC
Source: https://github.com/tsamsonov/grwat

Help Index


Extract baseflow

Description

Extract baseflow from hydrological series using the filtering approach

Usage

gr_baseflow(
  Q,
  a = 0.925,
  k = 0.975,
  C = 0.05,
  aq = -0.5,
  passes = 3,
  padding = 30,
  method = "lynehollick"
)

Arguments

Q

Numeric runoff vector.

a

Numeric value of a filtering parameter used in 'chapman', 'jakeman' and 'lynehollick' methods. Defaults to 0.925.

k

Numeric value of a filtering parameter used in 'boughton' and 'maxwell' methods. Defaults to 0.975.

C

Numeric value of a separation shape parameter used in 'boughton', 'jakeman' and 'maxwell' methods

aq

Numeric value of a filtering parameter used in 'jakeman' method. Defaults to -0.5.

passes

Integer number of filtering iterations. The first iteration is forward, second is backward, third is forward and so on. Defaults to 3.

padding

Integer number of elements padded at the beginning and ending of runoff vector to reduce boundary effects. Defaults to 30.

method

Character string to set baseflow filtering method. Available methods are 'boughton', 'chapman', 'furey', 'jakeman', 'lynehollick' and 'maxwell'. Default is 'lynehollick', which corresponds to Lyne-Hollick (1979) hydrograph separation method.

Value

Numeric baseflow vector with length equal to Q

Examples

library(grwat)
library(ggplot2)
library(dplyr)
library(tidyr)
library(lubridate)

data(spas) # example Spas-Zagorye data is included with grwat package

# Calculate baseflow using Line-Hollick approach
hdata = spas %>% 
  mutate(Qbase = gr_baseflow(Q, method = 'lynehollick', 
                             a = 0.925, passes = 3))

# Visualize for 1980 year
ggplot(hdata) +
  geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
  geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
  scale_x_date(limits = c(ymd(19800101), ymd(19801231)))

# Compare various approaches
hdata = spas %>%
  mutate(lynehollick = gr_baseflow(Q, method = 'lynehollick', a = 0.9),
         boughton = gr_baseflow(Q, method = 'boughton', k = 0.9),
         jakeman = gr_baseflow(Q, method = 'jakeman', k = 0.9),
         maxwell = gr_baseflow(Q, method = 'maxwell', k = 0.9)) %>% 
  pivot_longer(lynehollick:maxwell, names_to = 'Method', values_to = 'Qbase')

# Visualize for 1980 year
ggplot(hdata) +
  geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
  geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
  scale_x_date(limits = c(ymd(19810101), ymd(19811231))) +
  facet_wrap(~Method)

# Compare Lyne to Kudelin
p = gr_get_params('center')
p$filter = 'kudelin'

hdata = spas %>% 
  mutate(lynehollick = gr_baseflow(Q, method = 'lynehollick', 
                                   a = 0.925, passes = 3),
         kudelin = gr_separate(spas, p)$Qbase) %>% 
  pivot_longer(lynehollick:kudelin, names_to = 'Method', values_to = 'Qbase')

# Visualize for 1980 year
ggplot(hdata) +
  geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
  geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
  scale_x_date(limits = c(ymd(19800101), ymd(19801231))) +
  facet_wrap(~Method)

Quasi-geographic buffering

Description

Generate the buffer of spatial object in geographic coordinates. The function transforms the object into Azimuthal equidistant projection, then buffers it by the specified radius and then reprojects into geographical coordinate system (WGS84)

Usage

gr_buffer_geo(g, bufsize)

Arguments

g

sf or sfg object with known coordinate system.

bufsize

Numeric value of a buffer distance, in meters.

Value

sf or sfg object, buffered to bufsize and projected into geographic coordinates (WGS84).

Examples

if (require("sf")) {

  library(grwat)
  library(ggplot2)
  path = system.file("extdata", "spas-zagorye.gpkg", package = "grwat")
  basin = sf::st_read(path, layer = 'basin') # read basin region

  basin_buffer = gr_buffer_geo(basin, 25000)

  ggplot() +
    geom_sf(data = basin_buffer, fill = 'orangered', color = 'black') +
    geom_sf(data = basin, fill = 'steelblue', color = 'black')

}

Check the correctness of data frame for separating

Description

This function is called inside gr_separate(), but can be used explicitly inside your code.

Usage

gr_check_data(df)

Arguments

df

data.frame with four columns: date, runoff, temperature, precipitation, as required by gr_separate().

Value

stops execution if df contains the wrong number of columns, or the columns have the wrong types, or the data in columns is incorrect (e.g. runoff or precipitation are negative).

Examples

library(grwat)

# example Spas-Zagorye data is included with grwat package
data(spas)
head(spas)

gr_check_data(spas)

# raw Spas-Zagorye data represents date components
# in columns and does not contain meteorologgical variables
path = system.file("extdata", "spas-zagorye.txt", 
                   package = "grwat")

hdata_raw = read.delim(path, header = FALSE, 
                       sep = ' ', na.strings = c('-999', '-999.0', '-'),
                       col.names = c('d', 'm', 'y', 'q'))

print(hdata_raw)

try(gr_check_data(hdata_raw))

Check the correctness of parameters list for separating

Description

Check the correctness of parameters list for separating

Usage

gr_check_params(params, df = NULL)

Arguments

params

list of separation parameters, as returned by gr_get_params() function

df

data.frame with four columns: date, runoff, temperature, precipitation, as required by gr_separate(). Required when params is a list of parameter lists. Defaults to NULL.

Value

stops the execution if anything is wrong and prints the exact reason of the error. Otherwise prints the message that everything is OK

Examples

library(grwat)

# example Spas-Zagorye data is included with grwat package
data(spas)

params = gr_get_params(reg = 'center')

gr_check_params(params)

# set the unknown parameter
params$new = -2

# use try if you do not want to stop at error
try(gr_check_params(params))

# remove wrong parameter
params$new = NULL

# remove right parameter
params$grad1 = NULL
try(gr_check_params(params))

# reset
params = gr_get_params(reg = 'center')

sep = gr_separate(spas, params, debug = TRUE)
parlist = attributes(sep)$params

parlist[['2002']]$grad1 = 4

# if the parlist is used for separation
# then data frame must be specified
try(gr_check_params(parlist))

gr_check_params(parlist, spas)

# grad parameter is not known
parlist[['2002']]$grad = 4
try(gr_check_params(parlist, spas))

# remove wrong parameter
parlist[['2002']]$grad = NULL

# remove year
parlist[['2002']] = NULL
try(gr_check_params(parlist, spas))

parlist[['2002']] = parlist[['2001']]
gr_check_params(parlist, spas)

Fill missing daily data

Description

Use the function to fill the missing daily data by linear interpolation. These can be both missing dates and missing runoff or temperature values. A preliminary summary of missing data can be viewed by gr_get_gaps()

Usage

gr_fill_gaps(hdata, autocorr = 0.7, nobserv = NULL)

Arguments

hdata

data.frame with at least two columns, where the first column is Date, and the remaining columns have numeric type.

autocorr

Autocorrelation value that defines possible length of the period that can be filled. Defaults to 0.7. If nobserv parameter is set, then this parameter is ignored. If both parameters are NULL, then all gaps are filled disregard of their lengths (not recommended).

nobserv

Maximum number of contiguous observations that can be interpolated. Defaults to NULL. If this parameter is set, then autocorr parameter is ignored. If both parameters are NULL, then all gaps are filled disregard of their lengths (not recommended).

Value

data.frame which is a filled version of hdata

Examples

library(grwat)
library(dplyr)

# example Spas-Zagorye data is included with grwat package
path = system.file("extdata", "spas-zagorye.txt", 
                   package = "grwat")

hdata_raw = read.delim(path, header = FALSE, 
                       sep = ' ', na.strings = c('-999', '-999.0', '-'),
                       col.names = c('d', 'm', 'y', 'q'))

hdata = hdata_raw %>% 
  transmute(Date = lubridate::make_date(y, m, d), 
            Q = q)

head(hdata)

# identify gaps
gr_get_gaps(hdata) 

# fill gaps
fhdata = gr_fill_gaps(hdata, autocorr = 0.8)

# check the results
gr_get_gaps(fhdata)

# fill gaps
fhdata = gr_fill_gaps(hdata, nobserv = 7)

# check the results
gr_get_gaps(fhdata)

Get gaps in the daily data

Description

Use the function to detect periods of missing data. The first column must be of Date type. The data is considered to be a gap if any value in the row is missing.

Usage

gr_get_gaps(hdata)

Arguments

hdata

data.frame with at least two columns, where the first column is Date

Value

data.frame with periods of data and periods of gaps, containing five columns: number of the period (num), start of the period (start_date), end of the period (end_date), duration of the period (duration) and type of the period (type).

Examples

library(grwat)
library(dplyr)

# example Spas-Zagorye data is included with grwat package
path = system.file("extdata", "spas-zagorye.txt", 
                   package = "grwat")

hdata_raw = read.delim(path, header = FALSE, 
                       sep = ' ', na.strings = c('-999', '-999.0', '-'),
                       col.names = c('d', 'm', 'y', 'q'))

hdata = hdata_raw %>% 
  transmute(Date = lubridate::make_date(y, m, d), 
            Q = q)

head(hdata)

# identify gaps
gr_get_gaps(hdata) 

# fill gaps
fhdata = gr_fill_gaps(hdata, autocorr = 0.8)

# check the results
gr_get_gaps(fhdata)

# fill gaps
fhdata = gr_fill_gaps(hdata, nobserv = 7)

# check the results
gr_get_gaps(fhdata)

Get hydrograph separation parameters

Description

The function returns the list of parameters that can be used by gr_separate(). Since the parameters are region-specific, the location must be selected. It can be identified by region name or geographic coordinates. If both are specified, then region have a higher priority

Usage

gr_get_params(reg = "center", lon = NULL, lat = NULL)

Arguments

reg

Character string — the name of the region. Defaults to 'center'.

lon

Numeric value of the longitude. Ignored if reg is specified.

lat

Numeric value of the latitude. Ignored if reg is specified.

Value

List of separation parameters that can be used in gr_separate() function.

Examples

library(grwat)

params = gr_get_params(reg = 'center')

print(params)

Get the information about parameters used to separate the hydrograph

Description

Get the information about parameters used to separate the hydrograph

Usage

gr_help_params()

Value

data.frame with description of hydrograph separation parameters that are used in gr_separate() .

Examples

library(grwat)

gr_help_params()

Hydrograph separation variables

Description

Use this function to learn the meaning of the variables that are calculated by gr_summarize().

Usage

gr_help_vars()

Value

data.frame of hydrograph separation variables

Examples

library(grwat)

gr_help_vars()

Join reanalysis data

Description

The function performs spatial join of meteorological variables (temperature and precipitation) from grwat reanalysis to the daily runoff time series. Reanalysis covers the East European Plain with 0.75 degrees spatial resolution and is obtained based on CIRES-DOE (1880-1949) and ERA5 (1950-2021) data. This function is useful when the data from meteorological stations are missing inside the basin.

Usage

gr_join_rean(hdata, rean, buffer)

Arguments

hdata

data.frame containing 2 columns: Date and runoff

rean

list as returned by gr_read_rean()

buffer

sf object containing the region to select reanalysis data. Usually a river basin is used to select the meteorological data. Use gr_buffer_geo() to buffer the basin by specified distance and get more data, if needed.

Details

Download the reanalysis archive from here.

Value

data.frame with four columns: date, runoff, temperature, precipitation.

Examples

if (require("sf") && require("ncdf4")) {

  library(grwat)
  library(dplyr)

  # example Spas-Zagorye daily runoff data is included with grwat package
  data_path = system.file("extdata", "spas-zagorye.txt",
                          package = "grwat")

  hdata_raw = read.delim(data_path, header = FALSE, 
                         sep = ' ', na.strings = c('-999', '-999.0', '-'),
                         col.names = c('d', 'm', 'y', 'q'))

  hdata = hdata_raw %>%
    transmute(Date = lubridate::make_date(y, m, d),
              Q = q)

  head(hdata)

  # read basin
  basin_path = system.file("extdata", "spas-zagorye.gpkg",
                           package = "grwat")
  basin = sf::st_read(basin_path, layer = 'basin') # read basin region
  basin_buffer = gr_buffer_geo(basin, 25000)

  ## Not run: 
    # read reanalysis data
    rean = gr_read_rean(
      '/Volumes/Data/Spatial/Reanalysis/grwat/pre_1880-2021.nc',
      '/Volumes/Data/Spatial/Reanalysis/grwat/temp_1880-2021.nc'
    )

    # spatial join of reanalysis data to runoff data
    hdata_rean = gr_join_rean(hdata, rean, basin_buffer)

    head(hdata_rean)
  
## End(Not run)

}

Tabular representation of tests

Description

This function is used to represent the results of gr_test_vars() in a tabular form. Used mainly in gr_report(), but can be used for your own purposes.

Usage

gr_kable_tests(tests, format = "html")

Arguments

tests

list of tests as returned by gr_test_vars() function.

format

Character string encoding the type of output. Currently 'html' only is supported.

Value

HTML table as returned by knitr::kable() function.

Examples

if (require("kableExtra")) {
  
  library(grwat)
  
  data(spas) # example Spas-Zagorye data is included with grwat package
  
  # separate
  sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
  
  # summarize from 1965 to 1990
  vars = gr_summarize(sep, 1965, 1990)
  
  # test all variables
  tests = gr_test_vars(vars)
  
  # kable tests
  gr_kable_tests(tests)

}

Plot runoff ACF

Description

The function plots the autocorrelation function (ACF) for daily runoff time series. A number of days corresponding to the specified autocorr value is highlighted.

Usage

gr_plot_acf(hdata, autocorr = 0.7, maxlag = 30, print = TRUE)

Arguments

hdata

data.frame with first column as Date and the second column as runoff

autocorr

Numeric value of the autocorrelation for which the time period will be highlighted. Defaults to 0.7.

maxlag

Integer value of the maximum daily lag used to calculate the correlation. Defaults to 30.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing the autocorrelation function (ACF) for daily runoff time series

Examples

library(grwat)

# example Spas-Zagorye data is included with grwat package
data(spas)
head(spas)

# plot ACF
gr_plot_acf(spas, 0.65)

Horizon hydrograph plot

Description

A convenient wrapper around ggHoriPlot::geom_horizon() to visualize multiple river hydrographs at once.

Usage

gr_plot_hori(df, years, pal = "Blues", rev = TRUE, scale = 6, print = TRUE)

Arguments

df

data.frame with date (1st) and runoff (2nd) columns.

years

Integer vector of years to be plotted.

pal

Numeric or character string. Color palette identifier passed to ggplot2::scale_fill_distiller().

rev

Boolean. Reverse the palette? Defaults to FALSE.

scale

Numeric scale factor passed to ggHoriPlot::geom_horizon(). Defaults to 6.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing multiple river hydrographs at once using the horizon plot approach

Examples

if (require("ggHoriPlot") && require("ggthemes")) {
  
  library(grwat)
  
  data(spas) # example Spas-Zagorye data is included with grwat package
  
  # separate
  sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
  
  # horizon plot for selected years
  gr_plot_hori(sep, years = 1960:1980)
  
}

Runoff matrix plot

Description

The function plots runoff values, components and seasons using the matrix-based approach. The X axis corresponds to the day of the year, and the Y axis corresponds to the year. The function is useful when the whole picture of river runoff needs to be assessed.

Usage

gr_plot_matrix(df, years = NULL, type = "runoff", print = TRUE)

Arguments

df

data.frame of hydrograph separation produced by gr_separate().

years

Integer vector of years to be plotted. Defaults to NULL.

type

Character string. Supported options are 'runoff', 'component', and 'season'. Defaults to 'runoff'.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing the runoff values, components or seasons using the matrix-based approach

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# matrix plot for runoff
gr_plot_matrix(sep, type = 'runoff')

# matrix plot for seasons
gr_plot_matrix(sep, type = 'season')

# matrix plot for genetic components
gr_plot_matrix(sep, type = 'component')

Plot minimum runoff month

Description

Generate a histogram of a minimum runoff month for two periods: before and after the change year set by year parameter.

Usage

gr_plot_minmonth(
  df,
  year = NULL,
  exclude = NULL,
  tests = NULL,
  pagebreak = FALSE,
  print = TRUE
)

Arguments

df

data.frame of hydrograph and meteorological variables as produced by gr_summarize().

year

Integer. Change year value to separate two periods.

exclude

Integer vector of years to be excluded from plotting.

tests

Tests list for the same variables (generated by gr_test_vars() function)

pagebreak

Logical. Whether to break page between plots (needed for reporting). Defaults to FALSE.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of two ggplot2 objects, representing the histogram of a minimum runoff month for two periods: before and after the change year

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# plot minimum runoff month for two periods divided by Pettitt test
gr_plot_minmonth(vars, tests = gr_test_vars(vars))

# plot minimum runoff month for two periods divided by fixed year
gr_plot_minmonth(vars, year = 1978)

Plot long-term hydrograph variable changes

Description

This function generates boxplots of the hydrograph separation variables produced by gr_summarize(). The data for each variable is divided into two samples: before and after the change year either set by year parameter or extracted from tests (statistically estimated). Different background fill colors are used to differentiate seasons types.

Usage

gr_plot_periods(
  df,
  ...,
  year = NULL,
  exclude = NULL,
  tests = NULL,
  layout = as.matrix(1),
  pagebreak = FALSE,
  print = TRUE
)

Arguments

df

data.frame of hydrograph and meteorological variables produced by gr_summarize().

...

Quoted sequence of variable names.

year

Integer. Change year value to separate two periods (overridden by tests if it is supplied).

exclude

Integer vector of years to be excluded from plotting.

tests

Tests list for the same variables (generated by gr_test_vars() function)

layout

matrix that encodes the order of plotting.

pagebreak

Logical. Whether to break page between plots (needed for reporting). Defaults to FALSE.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of ggplot2 objects, one for each variable, representing its long-term changes

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# plot periods with fixed change year
gr_plot_periods(vars, Qygr, year = 1978)

# plot periods with change year from Pettitt test
gr_plot_periods(vars, Qygr, tests = TRUE)

# calculate test beforehand
tests = gr_test_vars(vars)
gr_plot_periods(vars, Qspmax, tests = tests)

# use matrix layout to plot multiple variables
gr_plot_periods(vars, Qygr, Qspmax, D10w1, Wsprngr,
                layout = matrix(1:4, nrow = 2),
                tests = tests)

Ridgeline hydrograph plot

Description

A convenient wrapper around ggridges::geom_ridgeline() to visualize multiple river hydrographs at once.

Usage

gr_plot_ridge(
  df,
  years,
  pal = 4,
  rev = FALSE,
  scale = 0.01,
  alpha = 0.8,
  print = TRUE
)

Arguments

df

data.frame with date (1st) and runoff (2nd) columns.

years

Integer vector of years to be plotted.

pal

Numeric or character string. Color palette identifier passed to ggplot2::scale_fill_distiller().

rev

Boolean. Reverse the palette? Defaults to FALSE.

scale

Numeric scale factor passed to ggridges::geom_ridgeline(). Defaults to 0.01.

alpha

Numeric opacity value of the ridgeline plot. Defaults to 0.8.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing the multiple river hydrographs at once using the ridgeline plot approach

Examples

if (require("ggridges")) {
  
  library(grwat)
  
  data(spas) # example Spas-Zagorye data is included with grwat package
  
  # separate
  sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
  
  # ridgline plot for selected years
  gr_plot_ridge(sep, years = c(1960, 1965, 1989, 2001, 2012)) 

}

Plot hydrograph separation

Description

The function plots river hydrograph by filling the different flow types using colors. Matrix layouts can be used if multiple plots are needed. Temperature and precipitation can be overlaid.

Usage

gr_plot_sep(
  df,
  years = NULL,
  layout = as.matrix(1),
  pagebreak = FALSE,
  temp = FALSE,
  prec = FALSE,
  span = 5,
  print = TRUE
)

Arguments

df

data.frame of hydrograph separation as produced by gr_separate().

years

Integer vector of years to be plotted.

layout

matrix that encodes the order of plotting.

pagebreak

Logical. Whether to break page between plots (used by gr_report()). Defaults to FALSE.

temp

Boolean. Add temperature curve to the plot? Defaults to FALSE. If both temp = TRUE and prec = TRUE, then the axis is drawn for precipitation.

prec

Boolean. Add precipitation curve to the plot? Defaults to FALSE. If both temp = TRUE and prec = TRUE, then the axis is drawn for precipitation.

span

Integer number of days to accumulate precipitation for plotting.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of ggplot2 objects, one for each year, representing the hydrograph separation

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# One year
gr_plot_sep(sep, 1978) 

# Two years
gr_plot_sep(sep, c(1978, 1989)) 

# Two years in a matrix layout
gr_plot_sep(sep, 1988:1989, layout = matrix(1:2, nrow = 2, byrow = TRUE)) 

# Add temperature and precipitation
gr_plot_sep(sep, 1991, temp = TRUE, prec = TRUE)

Plot change year density

Description

The function extracts change years from results of gr_test_vars() and plots their probability density. Since for every variable the change year is individual, this procedure allows finding the one most probable year, which is the mode of the distribution. This year is highlighted by the line and labeled on the plot.

Usage

gr_plot_tests(tests, type = "year", print = TRUE)

Arguments

tests

list of tests generated by gr_test_vars().

type

Character string type of the plot. Currently only 'year' is supported, which means that the distribution density of the change year detected by Pettitt test is visualized. Ignored until other types are implemented.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing the selected type of the tested variable

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# test all variables
tests = gr_test_vars(vars)

# plot change year from Pettitt test
gr_plot_tests(tests, type = 'year')

Plot interannual hydrograph variable changes

Description

This function plots the hydrograph separation variables produced by gr_summarize(). Different background fill colors and line types are used to differentiate seasons and variable types.

Usage

gr_plot_vars(
  df,
  ...,
  tests = NULL,
  exclude = NULL,
  smooth = TRUE,
  layout = as.matrix(1),
  pagebreak = FALSE,
  print = TRUE
)

Arguments

df

data.frame of hydrograph and meteorological variables produced by gr_summarize().

...

Quoted sequence of variable names.

tests

list of tests for the same variables (generated by gr_test_vars() function). If tests are specified, then they are added to the plot.

exclude

Integer vector of years to be excluded from plotting.

smooth

Logical. If TRUE then local smoothing regression is plotted. Defaults to TRUE.

layout

matrix that encodes the order of plotting.

pagebreak

Logical. Whether to break page between plots (gr_report()). Defaults to FALSE.

print

Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of ggplot2 objects, one for each variable, representing its interannual changes

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# plot one selected variable
gr_plot_vars(vars, Qygr) 

# plot two variables sequentially
gr_plot_vars(vars, D10w1, Wsprngr)

# four variables in matrix layout with tests calculated on the fly
gr_plot_vars(vars, Qspmax, Qygr, D10w1, Wsprngr,
             layout = matrix(1:4, nrow = 2, byrow = TRUE),
             tests = TRUE)

Read reanalysis data

Description

The function reads meteorological variables (temperature and precipitation) from grwat reanalysis for using with gr_join_rean(). Reanalysis covers the East European Plain with 0.75 degrees spatial resolution and is obtained based on CIRES-DOE (1880-1949) and ERA5 (1950-2021) data.

Usage

gr_read_rean(file_prec, file_temp)

Arguments

file_prec

Character string path to precipitation NetCDF file.

file_temp

Character string path to temperature NetCDF file.

Details

Download the reanalysis archive from here.

Value

list containing time series, precipitation series, temperature series and spatial points (sf)

Examples

if (require("sf") && require("ncdf4")) {
  
  library(grwat)
  
  # read reanalysis data
  ## Not run: 
    rean = gr_read_rean(
      '/Volumes/Data/Spatial/Reanalysis/grwat/pre_1880-2021.nc',
      '/Volumes/Data/Spatial/Reanalysis/grwat/temp_1880-2021.nc'
    ) 
    
    str(rean)
  
## End(Not run)
  
}

Report hydrograph separation and variables

Description

This function generates a graphical HTML report that summarizes separation of hydrograph, its variables and their statistical properties. See example report generated by this command for spas dataset included in grwat package.

Usage

gr_report(
  sep,
  vars,
  output = "Report.html",
  year = NULL,
  exclude = NULL,
  temp = FALSE,
  prec = FALSE,
  span = 5,
  locale = "EN"
)

Arguments

sep

data.frame of hydrograph separation as returned by gr_separate() function.

vars

data.frame of hydrograph variables as returned by gr_summarize() function.

output

Character string path to the output file. Must have .html extension.

year

Integer value of year used to divide series in two samples compared by Student and Fisher tests. Defaults to NULL which means that the year is calculated automatically by Pettitt test. Defaults to NULL.

exclude

Integer vector of years to be excluded from reporting. Defaults to NULL.

temp

Boolean. Plot temperature on the top of hydrograph? Defaults to FALSE. If both temp = TRUE and prec = TRUE, then the axis is drawn for precipitation.

prec

Boolean. Plot precipitation on the top of hydrograph? Defaults to FALSE. If both temp = TRUE and prec = TRUE, then the axis is drawn for precipitation.

span

Integer number of days to accumulate precipitation for plotting. Defaults to 5.

locale

Character string locale. Currently only English ('EN') and Russian ('RU') locales are supported. Defaults to 'EN'.

Value

No return value, called for side effects

Examples

## Not run: 
  if (require("knitr") && require("rmarkdown") && require("kableExtra")) {
    library(grwat)
    
    data(spas) # example Spas-Zagorye data is included with grwat package
    
    # separate
    sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
    
    # summarize
    vars = gr_summarize(sep)
    
    # report
    report = '~/Spas-Zagorye.html'
    
    gr_report(sep, vars, output = report)
    browseURL(report)
  }

## End(Not run)

Advanced hydrograph separation

Description

Separates the runoff into genetic components: groundwater, thaw, rain and spring.

Usage

gr_separate(df, params = gr_get_params(), debug = FALSE)

Arguments

df

data.frame with four columns: date, runoff, temperature, precipitation.

params

list of separation parameters, as returned by gr_get_params() function. Can also be a list of such lists if modified parameters are required for some years. In this case the length of params must be equal to the number of calendar years in df or be equal to 1.

debug

Boolean. If TRUE then additional attributes jittered and params are written to the output data.frame. jittered is an integer vector of years for which the separation parameters were randomly jittered. params is a list of separation parameter lists used for each year (some o those may have been jittered). Defaults to FALSE.

Value

A data.frame with 11 columns:

Column Description
Date date
Q total runoff
Temp temperature
Prec precipitation
Qbase baseflow
Quick quickflow
Qspri spring flood
Qrain rain floods
Qthaw thaw floods
Season a season of the year
Year a water-resources year

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package
head(spas)

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# Visualize
gr_plot_sep(sep, c(1978, 1989)) 

# Debug mode gives access to additional information
sep_debug = gr_separate(spas, 
                        params = gr_get_params(reg = 'center'), 
                        debug = TRUE)

# a vector of years with jittered params
jit = attributes(sep_debug)$jittered
print(jit)

# actual params used for each year
parlist = attributes(sep_debug)$params
partab = do.call(dplyr::bind_rows, parlist) # View as table
head(partab)

# extract and tweak parameters for selected year
p = parlist[['1989']]
p$grad1 = 1
p$grad2 = 2.5

# use tweaked parameters for all years
sep_debug = gr_separate(spas, params = p, debug = TRUE)

# Visualize
gr_plot_sep(sep_debug, c(1978, 1989)) 

# actual params used for each year
parlist = attributes(sep_debug)$params

# tweak parameters for selected year
parlist[['1989']]$grad1 = 3
parlist[['1989']]$grad2 = 6

# set the sprecdays parameter for multiple years
parlist = gr_set_param(parlist, sprecdays, 
                       years = c(1978, 1989:1995), 
                       value = 15)

# set the spcomp parameter for all years
parlist = gr_set_param(parlist, spcomp, value = 2.5)

# use the list of parameters for separation
sep_debug = gr_separate(spas, params = parlist, debug = TRUE)

# Visualize
gr_plot_sep(sep_debug, c(1978, 1989))

Set the language that is used for plotting

Description

Run this function once at the beginning of the session. All plots will be labeled using the selected language.

Usage

gr_set_locale(locale = "EN")

Arguments

locale

Character string locale. Currently only English ('EN'), Russian ('RU') and Ukrainian ('UA') locales are supported. More locales can be requested at issue on GitHub. Defaults to 'EN'.

Details

Note to Linux users: the desired locale may not be installed on the system. A list of available locales can be obtained in bash terminal:

locale -a

Russian locale is ru_RU.UTF-8, and Ukrainian locale is uk_UA.UTF-8. If absent in the list, then install the desired locales by:

⁠sudo locale-gen ru_RU.UTF-8⁠

⁠sudo locale-gen uk_UA.UTF-8⁠

⁠sudo update-locale⁠

Then restart R session, and localization should work as expected.

Value

No return value, called for side effects

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# Default is  English
gr_set_locale('EN')
gr_plot_sep(sep, 1978)

Set the value of hydrograph separation parameter

Description

The value is set for selected years in parameter list. Such list is returned by gr_separate() with debug = TRUE set.

Usage

gr_set_param(params, p, value, years = NULL)

Arguments

params

list of lists of hydrograph separation parameters as returned in params attribute by gr_separate() with debug = TRUE.

p

Name of the parameter.

value

Numeric value to set.

years

Integer vector of years to modify. Defaults to NULL, which means that all years will be modified.

Value

list of lists — a modified version of params

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# Debug mode gives access to additional information
sep = gr_separate(spas, 
                  params = gr_get_params(reg = 'center'), 
                  debug = TRUE)

# Visualize
gr_plot_sep(sep, c(1978, 1989)) 

# actual params used for each year
parlist = attributes(sep)$params

# set the sprecdays parameter for multiple years
parlist = gr_set_param(parlist, sprecdays, 
                       years = c(1978, 1989:1995), 
                       value = 15)

# use the list of parameters for separation
sep_new = gr_separate(spas, params = parlist, debug = TRUE)

# Visualize
gr_plot_sep(sep_new, c(1978, 1989))

Summarize hydrograph separation

Description

Use this function to get meaningful summary statistics for hydrograph separation. Resulting variables are described by gr_help_vars(). This function is a convenient wrapper around dplyr's df %>% group_by %>% summarize idiom.

Usage

gr_summarize(df, year_min = NULL, year_max = NULL)

Arguments

df

data.frame of hydrograph separation resulting from gr_separate() function

year_min

integer first year to summarise

year_max

integer last year to summarise

Value

data.frame with one row for each water-resources year and multiple columns of statistics explained by gr_help_vars().

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize
vars = gr_summarize(sep)

head(vars)

gr_plot_vars(vars, Qygr, tests = TRUE)

Test hydrograph changes

Description

Use this function to test interannual changes or hydrograph separation variables returned by gr_summarize(). Pettitt test is used to detect the change year — i.e. the year which divides the time series into the statistically most differing samples. Student (Welch) and Fisher tests are used to estimate the significance of mean and variance differences of these samples. Theil-Sen test calculates the trend slope value. Mann-Kendall test is performed to reveal the significance of the trend.

Usage

gr_test_vars(df, ..., year = NULL, exclude = NULL)

Arguments

df

data.frame as produced by gr_summarize() function.

...

Names of the tested variables (quoted).

year

Integer value of year used to divide series in two samples compared by Student and Fisher tests. Defaults to NULL which means that the year is calculated automatically by Pettitt test.

exclude

Integer vector of years to be excluded from tests.

Details

Number of observations formally required for various tests: Pettitt > 0, Mann-Kendall > 2, Theil-Sen > 1, Student > 1, Fisher > 1.

Value

list of testing results with following elements:

Element Description
ptt Pettitt tests for change year
mkt Mann-Kendall test for trend significance
tst Theil-Sen test for slope estimation
ts_fit Theil-Sen linear model fit
tt Student (Welch) test for significance of mean differences between two periods
ft Fisher test for significance of variance differences between two periods
year Integer value of year used to divide series in two samples compared by Student and Fisher tests
maxval Maximum value for the variable along the full time series
fixed_year Boolean TRUE or FALSE value indicating if the year was fixed
pvalues p-values of all tests summarized as a single table for all variables

Examples

library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# test all variables
tests = gr_test_vars(vars)

# view Pettitt test for Qygr
tests$ptt$Qygr

# view Fisher test for Q30s
tests$ft$Q30s

# test only Qygr and Q30s using 1978 as fixed year and excluding 1988-1991 yrs
gr_test_vars(vars, Qygr, Q30s, year = 1978, exclude = 1981:1983)

Spas-Zagorye daily runoff data

Description

A dataset containing the daily runoff data for Spas-Zagorye gauge on Protva river in Central European plane. The dataset is supplemented by meteorological variables (temperature and precipitation) obtained from CIRES-DOE (1880-1949) and ERA5 (1950-2021) data.

Usage

spas

Format

A data frame with 23742 rows and 4 variables:

Date

date, in dates

Q

daily runoff, in m3/s

Temp

daily temperature, in Celsius degrees

Prec

daily precipitation, in mm

Source

https://allrivers.info/gauge/protva-obninsk

https://gmvo.skniivh.ru

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html